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THE NUMERICAL SOLUTION OF THE THIN FILM FLOW 
SURROUNDING A HORIZONTAL CYLINDER RESULTING 

FROM A VERTICAL CYLINDRICAL JET 

ROLAND HUNT 
Department of Mathematics. University of Strathclyde. George Street, Glasgow, GI I X H .  U.K.  

SUMMARY 
The numerical solution of the thin film flow surrounding a horizontal cylinder resulting from a single vertical 
cylindrical jet is obtained. This is effected by transforming the domain of the flow, which contains a free 
surface, onto a rectangular parallelepiped and using a marching strategy to solve the ensuing parabolic 
equations. The flow terminates at a finite distance along the cylinder, its position depending on the velocity 
and mass flux of the jet. A comparison with the usual two-dimensional model in which the jet is replaced by a 
vertical sheet shows that such a representation is valid provided the overall width of the flow is not too large. 
In particular, the differences in heat transfer characteristics amount to a few per cent, thus validating the use 
of the two-dimensional model when applied to heat exchanger tubes. A comparison with the more usual 
multicolumn case is also considered. 
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1. INTRODUCTION 

Heat exchanger pipes in steam condensers are surrounded by a thin film of running water which 
arises from the condensation of steam onto cool pipes. Typically, a condenser will consist of an 
array of horizontal tubes with water draining from the one above to the one below. This drainage 
is usually in the form of equally spaced columns of liquid issuing from the midpoints of the 
columns of liquid associated with the tube one step higher (Figure l(a)). This thin film of water 
significantly affects the heat transfer characteristics of the tubes and has been extensively studied 
both theoretically and e~perimentally.l-~ In the theoretical treatment the columns of liquid are 
replaced by a vertical sheet of liquid which renders the governing equations independent of the 
direction along the tubes (Figure l(b)). The problem is now two-dimensional and amenable to 
solution, whereas the original problem is three-dimensional and fairly untractable. The question 
that now arises concerns the accuracy of these results when applied to the original problem. 

In this paper we seek to solve the thin film flow of a single vertical cylindrical column of liquid 
impinging onto the top generator of a horizontal cylinder (Figure 2). The study of a single column 
rather than an array of columns is chosen since the governing thin film equations are parabolic in 
nature and can be solved using a marching computer code. However, to solve the flow of an array 
of columns would necessitate that information should be capable of being passed from one 
column to another. In other words governing equations would need to be elliptic and hence we 
would need to use the full Navier-Stokes equations, which makes the problem an order of 
magnitude more difficult. The study of the single column is, however, a significant step forward, 
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Figure 1.  (a) Typical arrangement of horizontal tubes in a heat exchanger showing the columns of liquid falling in an 
alternate pattern. (b) The usual two-dimensional model used in theoretical calculations 
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Figure 2. The three-dimensional model with a single column of liquid showing the co-ordinate system 
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being three-dimensional, and will enable us to successfully assess the results of the two- 
dimensional model. 

The method of solution is an extension of that used for the two-dimensional flow about a 
cylinder described in an earlier paper’ (referred to as Paper I). The governing equations are first 
formulated in terms of two streamfunctions (Section 2). The outer boundary of the thin film is a 
free surface and in order to obtain accurate numerical results, the domain of the fluid is 
transformed onto a rectangular parallelepiped.6 The transformation used (see Section 3) not only 
gives a fixed domain but also removes the singularity at  the origin since the flow is initially 
Blasius-like. Section 4 shows how these equations can be integrated numerically, which necessi- 
tates subtracting out the flow at the origin. The results, comparison with the two-dimensional 
model and our main conclusions are presented in Section 5. 

2. GOVERNING EQUATIONS 

A cylindrical jet of fluid having raduis H ,  and velocity U ,  impinges vertically on the top generator 
of a horizontal cylinder having radius a, upon which we impose cylindrical polar co-ordinates 
(R, 0, Z) (Figure 2). In the large-Reynolds-number case the flow immediately subsequent to the 
jet forms a thin film of liquid. Since the film is thin, we can neglect the perpendicular velocity V, 
compared to the surface velocities V, and Vz; further, we can neglect 0- and Z-derivatives 
compared to R-derivatives. The Navier-Stokes and heat conduction equations in cylindrical 
polars co-ordinates then give 

av, 1 av, av, 
__ +- __ +-= 0, 
aR a ao az 

av, v,av av, a 2  V, v R - - + - A  aR a a@ +Vz-=gsinO+v- az a2R ’ 

where T, g, v and IC are the temperature, the acceleration due to gravity, the kinematic viscosity 
and the thermal diffusivity respectively. This derivation is similar to that involved in obtaining the 
boundary layer equations and similarly shows that the pressure is independent of R. This implies 
that if the pressure on the film surface is assumed constant (as in a steam condenser) then it is 
constant throughout the film and hence does not appear in the equations. 

Letting H(O, Z) be the thickness of the film, the position of the outer boundary can be denoted 
by CD = 0, where CD = a  + H ( 0 ,  Z )  - R. Demanding that the velocity vector V = ( VR, V,, V,) lies in 
the surface of the film requires that V@ * V = 0, which gives the boundary condition 

v, aH aH 
a ao az -- +Vz--VK=O on R=a+H(O,Z) .  

The other boundary conditions are the no-slip condition VR= V,= V,=O on R=a,  zero 
shear aV,’,laR=aV,/aR=O on the surface R = a + H ( O , Z ) ,  T=T, on R = a  and T=T, on 
R = a + H ( O ,  Z ) ,  where T, and T, are the temperatures on the cylinder wall and free 
surface respectively. 
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Near the jet the cylinder is approximately horizontal and the flow is radially symmetric. The 
flow here is essentially inviscid since, the jet Reynolds number U,H,/v being much less than the 
Reynolds number U,a/v of the film, the viscous boundary layer has not yet developed. Hence 
Bernouilli’s equation can be used to show that the radial velocity U initially has a uniform profile 
of magnitude U,.  If R is the radial distance from the centre of the jet then conservation of mass 
requires that n H $  U, = 2nRHU. Hence initially the conditions are 

U+V, and H - t i H g J R  asR+O. (3) 
Equations (1) can be non-dimensionalized using 

Z = ax ,  

where Re = U,a/v is the Reynolds number, to give 

au av aw 
- + - + - = 0, ax ay  az 

au au au a2u 
ax  a y  a Z  a2z 

av av au 1 . a Z v  

ax  a y  a Z  F a Z z  

u - + v - + w - = - - ,  

u - + u- + w -  = -sin y + -, ( 5 )  

ae ae ae 1 a28 
ax  ay  a Z  a Z z  ’ 

u-  + 0 - +  w -  =-- 

where F = U $ / g a  is the Froude number and ~ = v / K  is the Prandtl number. The boundary 
conditions then are 

u=v=w=O and 0=1 onz=O, 

au av ah ah 
-=-=O, u-+v- -w=O and 8=0 on z = h ( x , y ) ,  az  aZ a x  a y  

X Y Y 
u+-, r u-+- r and h+- r a s r - 4 ,  

where r = ,/ ( x 2  + y ) and y = 3 Re’’2 ( H ,  /a)’. 
To tie in with previous work, we introduce streamfunctions 4 and + defined by 

34 a* 3 4  a* 
aZ ’ aZ ax ay’  

v=- w=---- u=- (7) 

which implies that the first of ( 5 )  is satisfied identically. The other three equations of (5 )  give 

+ZZZ = (+Z+XZ - 9 x $ z z )  + (d%*yz - 4y+zz), 

(8) 
1 4,,,+F sin Y=(+,4x,-9x422) + ~ 4 z 4 y z - 4 y 4 z z ~ ~  
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subject to boundary conditions 

$,=4,=0, $=4=0 and 8=1 onz=0, 

$ z 2 = ~ 2 z = 0 ,  $~h,+~,h,+$,+~,,=O and 8=0 on z=h(x,y), (9) 

X Y Y 
r r 

$2+;, +2--- and h+- asr+O, 

where conditions $ = 4 = 0 on z = 0 define $ and 4 uniquely. 
The governing equations for the two-dimensional model in which the cylindrical jet is replaced 

by a sheet of liquid can be found from equations (8) by putting $ = 0 and a/ax = 0 (see Paper I) to 
give 

1 
422, + F sin Y = 42 4 y r  - 4y 422, 

1 
-822 = 428y - 
fJ 

subject to boundary conditions 

&,=O, 4=0 and 8=1 onz=O, 
4,,=0, 4 = y 2  and 8=0 on z=h(y), 

4- and h-y, asr+O, 

where y, =Re'/' H z / a  and H ,  is the semithickness of the impinging sheet. 

3. TRANSFORMATION OF THE EQUATIONS 

As in Paper I, we solve the free boundary problem (8), (9) by transforming the unknown domain 
of fluid onto a rectangular parallelepiped. More explicitly, we replace the independent vari- 
ables (x, y, z) by (x, y, q )  using the transformation z=z(x, y, q )  chosen such that the interval 
0 < z < h(x, y) is mapped onto the interval 0 < q < 1. Secondly, this transformation is chosen such 
that the inconsistency in the boundary conditions at the source is removed. From (9) we observe 
that I), = = 0 on z = 0, which is contrary to the condition that $2+x/r and 4 2 + y / r  as r+O. This 
inconsistency is removed in boundary layer theory using the Blasius transformation. However, 
here we need to use a more general transformation if we are simultaneously to maintain the fluid 
within a rectangular parallelepiped. We proceed as follows. 

First we write equations (8) as a first-order system since they will be solved numerically in this 
form and it makes the algebra much more tractable. In vector form these become 

Dw, + f = ( U s  V)U - WV * T, 
Q, = ii, u, = w, (12) 

where unbarred quantities are three-dimensional, 
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and barred quantities are two-dimensional, 

This mixture of dimensions is necessary if both the Navier-Stokes and the heat conduction 
equations are to be written as a single equation. 

We then make the general transformation z=z(x, y,  q )  of the independent variables and 
transform the dependent variables using 

where g depends on x, y and q and will be chosen to ensure that tilded variables are finite and 0(1) 
over the whole domain. Equations (12) then become 

D w4 -2w + s ( 9  - .g)w + sg f = sg[(ii - V)U - w v * 91, ( 9 9 )  
where the tildes have been dropped for clarity and s = az/aq. 

Immediately subsequent to the jet we have an outward axisymmetric flow whose variables can 
be written as an expansion in powers of r3/’ (as is typical of the analysis of a growing boundary 
layer in axisymmetric geometry). Similar to the axisymmetric flows in Paper I, this leads to a 
choice of transformation and g given by 

where h=rh is the scaled film thickness. Equations (16) map the interval O < z < h ( x ,  y )  onto 
0 6 q  6 1 and ensure that all dependent variables including h are 0(1) over the whole domain. 
The only drawback is that whilst (16) successfully deal with the inconsistency in the boundary 
conditions, it has created a co-ordinate singularity at r=O, q = 1. Fortunately, however, the flow 
here is extremely uniform and does not unduly affect the accuracy of the results. As explained in 
Paper I, there does not seem to be a transformation which will have all the required properties 
and avoid this singularity. Setting t = r 3 ” ,  th elements in equation (15) are 

Boundary conditions (9) become 

Y=O and u=(O,O, l)T on q = O ,  

‘u,,=O, t,b,+~y=O and 8=0 q n q = l .  (18) 

Initial and boundary equations 

The problem is symmetrical about the planes x = 0 and y = O  and hence it is sufficient to solve 
the problem in the quarter-plane x 2 0, y 2 0. Since equations (15) are parabolic in both the x- and 
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Figure 3. The computational grid in the xy-plane 

y-directions, it is possible to solve the problem by marching in both of these directions. Suppose a 
uniform mesh is placed on the quarter-plane (Figure 3); then it is possible to obtain a solution of 
(1 5) at location H along 0 < q d 1 provided the solution at points E, F and G is known. Hence it is 
possible to obtain a solution in the open quarter-plane x > 0, y > 0 provided a solution is available 
along lines AB and AC. 

The governing equations along AB and AC are more easily derived by considering the 
equations in polar form; that is, independent variables x and y are replaced by r and T using 
substitution x = r cos T ,  y = r sin T. The first two equations of (8) become 

where $ and 6 are the radial and meridional streamfunctions given by $= II/ cos z + 4 sin z and 
$= -I) sin T +4  cos T .  The lines AB and AC are lines of symmetry about which $ is an even 
function and 6 is odd, making every term in equation (19b) zero. However, a second non-zero 
equation is needed to complete the system and this is found by differentiating (19b) with respect to 
T .  Introducing q=(l /r)&)/dz ,  equations (19) along AB and AC become 
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where fi =0, 
transformations (14) and (16), the full set of equations along AB and AC is 

= 1 along z = 0 (AB) and fi =(sin y)/y,f, =sin y along z = 4 2  (AC). Using the 

2sg- - - A + sg, @ 4 + sg2 -- d + sgf= Sg($,Gr - * $,), 
r 

where 

subject to boundary conditions 

q = O  and 8=(0,0,1)’ on q=O, 

q’,,=O, @,+q=O and 8 = 0  o n q = l .  
A - 

Equations (21) and (22) can be solved along lines AB and AC using a marching strategy. That is, 
the solution at location I along 0 < q < 1 can be obtained provided J is known. Hence we can 
obtain the solution along these lines provided the solution at A is known. The equations at A are 
obtained from (21) by letting r+O and setting q = O  since the flow is initially axisymmetric. This 
makes sg = 0, giving equations with only q-derivates. The corresponding boundary conditions are 

* 
$=O, $,=O and 8=1 onq=O, 

$ = y  and O = O  o n q = l  and 6=y. 

Two-dimensional model 

Equations (10) and (1 1 )  are transformed in a similar fashion to (8) and (9). They are obtained by 
setting $ = 0 and a/dx = 0 in equations (1 5). The growing boundary layer in this geometry varies 
as y1I2 and the appropriate transformation replacing (16) is 

with h = h .  Setting {=y’l2, formulae (17) are the same except that the non-zero part of svg is 

Since $=O, three equations are r?dundant, giving a system of five equations. The boundary 
conditions are the same as (24) if $ is replaced by 4 and y by y2. For full details see Paper I. 
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4. NUMERICAL PROCEDURE 

Solution of the boundary equations and the two-dimensional model 

The boundary equations (21) are solved numerically using a modification of the Keller box 
method described in Paper 1. Although full details are given in that paper, a brief account will be 
given here in order that the new features appearing in the three-dimensional model can be 
addressed. 

A grid is placed in the two-dimensional domain r 2 0 ,  0 d q < 1, which is not necessarily 
uniform, given by the nodal points ri = Ti- + ki ,  i = 1,2 ,  . . . , ?k = ? k -  + hk, k = 1,2,  . . . , N ,  where 
ro =0, qo = 0, v N  = 1 and N is the number of mesh spaces in the ?-direction. Equations (21) are a set 
of eight first-order non-linear equations. The first three equations (i.e. the first vector equation) 
are differenced about the centre of a mesh rectangle, i.e. about the point (ri-+ki, qk-+hk), using 
simple central differences and averaging to obtain a second-order scheme. Since the other five 
equations do not contain derivatives in r,  they are more conveniently differenced about the point 
(ri, qk-*hk). Since these equations will be solved by a marching procedure, variables up to and 
including (i.e. as far as location I in Figure 3) will be known and the differenced equations 
together with the boundary conditions (22) will form a set of 8N + 9 non-linear equations in as 
many unknowns (which are the variables q, 6,G and ha t  location ri, i.e. J in Figure 3). This set of 
equations is solved using Newton’s method with the value of the variables at ri-  as a starting 
value. The ensuing Jacobian is a banded matrix with the final column filled owing to hbeing in all 
the equations. Inversion of this matrix is described in Paper I. 

The initial equations at location A are all differenced about ( r o ,  qk-*hk) and the resulting 
system is again solved by Newton’s method. Equations (25)  for the two-dimensional model are 
solved in a similar way; in this case there are 5 N + 6  equations in the system. 

Solution of the three-dimensional equations 

Having solved the boundary equations, we solve the three-dimensional equations (1 5) in the 
domain x>O, y>O using a similar technique. A grid x i = +  + kf,  i =  1, 2, . . . , yj=yj- + k;, 
j =  1, 2, . . . , with xo =yo=O and qk as before, is placed on the domain. The equations are 
differenced about (xi -+kf, yj-+kr, Y f k - + h k )  using simple central differences and averaging as 
previously. Since the solution at locations E, F and G in Figure 3 will have already been obtained 
via the marching strategy, the solution of the variables at H can again be obtained by solving the 
ensuing 8N +9 equations using Newton’s method. Iffis a typical variable then a suitable starting 
value for Newton’s iteration is 

fH =.& +f -&. (27)  
Near the jet the x- and y-components of velocity are x / r  and y/r respectively, which have 

singular derivatives in the x- and y-directions as r+O. In order to obtain accurate numerical 
results, it is necessary to subtract out this singularity. This is accomplished by replacing I) and 4 
by $ and 6 via 

where c0 = c(0,  q). This could be done algebraically by substituting (28)  into the transformed 
equations (15). However, this produces very complicated equations and it is much easier to make 
the substitution at the programming stage. Arrays are set up to hold the tilded variables and each 
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occurrence of $ and 4 in the programme is replaced by the right-hand sides of (28), where $and 6 
will be suitable averaged quantities (since these values are required at non-nodal points). The four 
derivative terms are replaced in a similar fashion by the right-hand sides of 

- xy - 
4 x  = 4 x  - r“ $ 0 9  Y2 

$1 = F X  + $0, 

where qx, Jx, J y  and JY will be approximated by their differenced counterparts. Replacing $ by 
$ z  and $zz and 4 by 4z and 4zz throughout equations (28) and (29) gives the corresponding 
equations for the derivatives of z. The procedure works well, giving smooth and accurate results 
near the origin. 

5. RESULTS AND DISCUSSION 

With three parameters ( F ,  y, a) to vary it is not possible to present full results covering the whole 
domain. We present full results for three cases, namely F = 2, a = 1 for y =+, 3 and 20, which give 
the flavour of what happens in general. Figure 4 shows the surface velocity magnitude contours, 
Figure 5 the film thickness and Figure 6 the streamlines superimposed on the contours of the heat 
transfer coefficient defined by 

Perhaps the most interesting feature of the results is that the flow halts at a finite distance in the 
x-direction. This can be seen most clearly from Figure 7, which depicts the surface velocity along 
the top generator of the cylinder (i.e. y = 0) for the three cases. The flow stops when u = 0 at x = x,, 
say, which we will refer to as the ‘edge’, and the flow does not exist for x > x,. Further, for y > 0 the 
flow does not exist beyond x, since there are no non-inertial horizontal forces present and the flow 
is confined to a domain 0 d x d x,, 0 d y d n. As x ,  is approached, the derivatives of some of the 
varibles become singular and for accuracy reasons it is necessary to approach the edge with 
decreasing grid spacings. If xi  and x i -  are the last two positions at which calculations have been 
made with corresponding values ui and ui - for the surface velocity at y = 0 then 

Approaching x ,  geometrically, the next grid position is x i +  = x i  + 1 ( x t  - x i )  with 0 < 1 < 1, where 
1 is set to 0.5 in the calculations. Using this technique, it is possible to approach x, to within 
10-4-10-3. Table I gives the position of the edge for various values of F and y (it is independent 
of a). There is no obvious formula relating x ,  to F and y but a least squares fit on the data gives 

X ,  - Y 3  (32) - 1.66 ~ 0 . 2 3  0 .36  

which is accurate to about 5%, showing that x ,  varies slowly with both F and y. 
In order to estimate the error, two runs were made with different grid spacings for each 

parameter set. From the differences between the results and noting that the scheme is second- 
order-accurate, the errors in results on the finer of the grids could be estimated. These are shown 
in Table I1 and indicate a typical accuracy of 0.03% away from the edge and 02% near the edge. 
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Figure 4. Surface velocity magnitude contours for F = 2, CT = 1 and (a) y =$, (b) y = 3 and (c) y = 20 

The fine grid dimensions are also shown in table, with the coarser grid being two-thirds of these in 
each direction. The CPU time for the fine grid runs 12,24 and 36 h for the three values of y on a 
Nimbus VX386 machine using a Fortran 386 compiler from the University of Salford. 

The data in Tables I and I11 were derived from results on a coarse grid (the grid spacing being a 
factor of three larger in the x- and y-directions and 3 in the q-direction). The CPU time was 
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Figure 5. Film thickness contours for F =  2, u= 1 and (a) y =$. (b) y = 3 and (c) y = 20 

typically 2 h and enabled results for a range of values of both F and y to be obtained. Comparison 
with the fine grids results indicates an accuracy of about 0.3%. 

Comparison with two-dimensional model 

Explicit results for the two-dimensional model have been reported elsewhere (Paper I) and will 
therefore not be repeated here. We will compare the results of the three-dimensional model with 
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Figure 6. Heat transfer coefficient contours superimposed on streamlines for F=2, u =  1 and (a)y=$, (b) y = 3  and 
(c)y=20 

those of the two-dimensional model which has the same initial velocity Uo, the same Froude 
number F and the same rate of fluid delivered per unit length of the cylinder. This last criterion 
gives a relationship between y and y2. The cylindrical jet of the three-dimensional model creates a 
thin film of width 2ax, (in original units), giving 7 ~ H z  R,/2axS as the rate per unit length. For the 
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Figure 7. Surface horizontal velocity along the top generator of the cylinder for y=+,  3 and 20 

Table I. Position of the edge, xs, as a function of F and y 

Y 

F 0.5 1 2 5 10 20 

1 1.328 1.754 2.258 3.021 3.652 4.311 
2 1.503 2.020 2,650 3.643 4490 5.394 
5 1.745 2.389 3.204 4.558 5.771 7.112 

10 1.935 2.680 3.645 5.307 6.855 8.621 

Table XI. Average relative error ( x  lo3) away from and near the edge for F = 2 and various y 

y = 0.5 y = 3  y = 20 

Away Near Away Near Away Near 

Horizontal velocity u 01 0.1 0.1 0.2 0 1  0.1 
Vertical velocity u 0.3 6.9 0.1 0.6 0.1 0.2 
Heat flux Q 0.3 1.7 0.2 0.4 2.0 1.4 
Film thickness h 0.3 9.4 0.2 2.7 0 2  2.3 
Grid dimensions 108 x 90 x 96 66 x 90 x 96 72 x 90 x 96 

two-dimensional model this rate is 2H2 U, .  Equating the two rates and using the definitions of y 
and y2 to eliminate Ho and H2 gives 

as the required relationship. 
Figure 8 shows contour maps of the ratio 3D/2D of the results when F = 2 and y =$ for vertical 

edge velocity, film thickness and heat transfer coefficient. For 0 < y < n/3 the comparison is poor, 
as would be expected since the differences between the two geometries are most apparent here. 
However, for n/3 < y < z the comparison is quite good, showing differences of the order of at most 
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Figure 8. Contours showing the ratio of results from the two- and three-dimensional models for F = 2, y = f and u = 1: 
(a) surface vertical velocity; (b) film thickness; (c) heat transfer coefficient 

10%. We can ‘average’ out these differences in the x-direction using formula 

a Y ) = -  g(x, Y )  dx, (34) 
xs I 

9 = ; jo i ( Y )  dY- 

where g is a representative function. The ‘averaged’ ratios for surface vertical velocity, film 
thickness and heat transfer coefficient are shown in Figure 9 for F = 2 with various y. In the case 
y=$ for 71/3<y<n the results are very close, having differences of about 1%; however, as 
y increases, the comparison becomes increasingly worse. We can ascertain the effect of the region 
0 < y ,< n/3 by calculating the global average, i.e. forming 

(35) 
- 1 xp 

Table 111 lists the percentage differences in the global averages for surface vertical velocity, film 
thickness, heat transfer coefficient and surface velocity magnitude for various F and y with IT= 1. 
From the table it is clear that there is a gradual worsening of the correlation between the two 
models as both y and F increase. Comparing these percentage differences with the position of x, as 
shown in Table I, it is clear that the differences between the two models are related to the distance 
from the jet to the edge. Although the surface vertical velocity and film thickness are considerably 
different for the two models at large y, the heat transfer coefficient is not so dissimilar, with an 
average difference of only 3%. Since our main interest is how thin films affect the heat transfer 
characteristics of horizontal tubes in a heat exchanger, it is apparent that the two-dimensional 
model will give the correct overall result to within this percentage. Hence the two-dimensional 
model can be used with reasonable confidence in spite of the fact that the source of liquid is 
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Figure 9. Ratio of results from the two- and three-dimensional models averaged in the x-direction for various values of y :  

(a) surface vertical velocity; (b) film thickness; (c) heat transfer coefficient 

columns rather than a sheet. Finally in the table are given the differences in surface velocity 
magnitude, which are much closer than the vertical velocity. 

In a heat exchanger we do not have a single jet but a series of columns of liquid falling onto the 
tubes at more or less equally spaced intervals (Figure l(a)). If these columns are modelled by a 
vertical sheet then it is intuitive that the closer the columns are together, the more accurate will be 
the result. The question that arises is how accurate can we except the two-dimensional model to 
be for a given column separation L. Assuming that a series of columns can be modelled 
approximately by a set of single columns whose edge (x,) is at a distance SL, then we can use 
Table I11 to estimate the likely error incurred. As mentioned earlier, the error incurred is 
correlated to the position of the edge, and in Figure 10 we give a least squares fit to the errors 
incurred by the surface vertical velocity and the heat transfer coefficient as a function of edge 
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Table 111. Percentage differences between the global averages of the two-dimensional and 
three-dimensional models for CJ = 1 

Y 

F 0 5  1 2 5 10 20 

Surface vertical velocity 1 6.1 8.9 11.4 15.7 19.4 21.0 
2 6.8 10.5 14.1 20.6 26.3 29.4 
5 7.3 11.9 16.8 26.6 35.6 41.3 

10 7.0 12.1 17.9 30.1 41.5 49.3 

Film thickness 1 4.0 7.1 11.3 18.2 23.0 267 
2 3.4 6.4 10.9 19.5 26.1 31.3 
5 2.4 5.1 9.5 20.8 30.9 39.0 

10 1.6 3.9 7.9 21.4 35.2 46.2 

Heat transfer coefficient 1 1.5 1.7 3.2 6.0 5.5 3.4 
2 1.3 1.0 1.8 3.6 2.9 0.6 
5 1.3 0.3 0.0 0.5 2.1 5.0 

10 1.5 0.0 1.0 3.8 6.8 10.4 

Surface velocity magnitude 1 1.3 0 2  1.5 3.9 6.1 6.2 
2 3.1 1.3 0 2  3.9 7.5 8.3 
5 6.8 5.1 3.4 2.3 8.6 11.3 

10 10.7 9.4 7.6 0.2 8.4 13.3 

50 

40 

T 
I4 

L! 30 
0)  
W 
d * 
5 
3 20 
a 

10 

0 

Edge position + 

Figure 10. Least squares straight line fits to the errors incurred when the jet of liquid is replaced by a vertical sheet for the 
surface vertical velocity (circles) and heat transfer coefficient (triangles). The lines are 6 . 2 6 ~ ~ -  3.10 and 0.86x,-0.48 

respectively. The corresponding line for the film thickness is 6 . 2 9 ~ ~  - 6.40 



556 R. HUNT 

position. From the slope of the lines we can conclude that the representation of a series of 
columns by a uniform sheet incurs percentage errors 6.3 1 and 0.92 in the velocity and heat flux 
fields respectively, where 1 = L/D with D being the diameter of the tubes. Since our main interest 
lies in the heat transfer characteristics of the tubes, it is the latter of these formulae which is the 
more significant. The error in the film thickness is similar to that of the velocity. 

6. CONCLUSIONS 

Numerical results have been obtained for the thin film flow surrounding a cylinder, issuing from a 
single cylindrical vertical jet. These have been obtained on fine grids for three cases ( F  = 2; y =*, 3, 
20; o= 1) with an accuracy of about 0.07% and coarse grids for 24 cases ( F =  1,2,5,10; y =*, 1,2, 
5 ,  10, 20; o =  1) with an accuracy of about 0.3%. 

The flow terminates at a finite distance in the x-direction. This distance increases slowly with F 
and y. 

A comparison with an equivalent two-dimensional model shows that the difference in the 
average heat transfer coefficient is typically about 3%. 

The replacement of a series of columns by a vertical sheet incurs typical errors of 6% times the 
separationldiameter ratio for the velocity and film thickness and 1% for the heat flux. 
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